Engagement of the pathogen survival response used by group A Streptococcus to avert destruction by innate host defense.

نویسندگان

  • Jovanka M Voyich
  • Kevin R Braughton
  • Daniel E Sturdevant
  • Cuong Vuong
  • Scott D Kobayashi
  • Stephen F Porcella
  • Michael Otto
  • James M Musser
  • Frank R DeLeo
چکیده

Neutrophils are a critical component of human innate host defense and efficiently kill the vast majority of invading microorganisms. However, bacterial pathogens such as group A Streptococcus (GAS) successfully avert destruction by neutrophils to cause human infections. Relatively little is known about how pathogens detect components of the innate immune system to respond and survive within the host. In this study, we show that inactivation of a two-component gene regulatory system designated Ihk-Irr significantly attenuates streptococcal virulence in mouse models of soft tissue infection and bacteremia. Microarray analysis of wild-type and irr-negative mutant (irr mutant) GAS strains revealed that Ihk-Irr influenced expression of 20% of all transcripts in the pathogen genome. Notably, at least 11 genes involved in cell wall synthesis, turnover, and/or modification were down-regulated in the irr mutant strain. Compared with the wild-type strain, significantly more of the irr mutant strain was killed by human neutrophil components that destroy bacteria by targeting the cell envelope (cell wall and/or membrane). Unexpectedly, expression of ihk and irr was dramatically increased in the wild-type strain exposed to these same neutrophil products under conditions that favored cell envelope damage. We report a GAS mechanism for detection of innate host defense that initiates the pathogen survival response, in which cell wall synthesis is critical. Importantly, our studies identify specific genes in the pathogen survival response as potential targets to control human infections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Responses of innate immune cells to group A Streptococcus

Group A Streptococcus (GAS), also called Streptococcus pyogenes, is a Gram-positive beta-hemolytic human pathogen which causes a wide range of mostly self-limiting but also several life-threatening diseases. Innate immune responses are fundamental for defense against GAS, yet their activation by pattern recognition receptors (PRRs) and GAS-derived pathogen-associated molecular patterns (PAMPs) ...

متن کامل

Toll-like receptor-mediated NF-kappaB activation: a phylogenetically conserved paradigm in innate immunity.

Innate immunity is an ancient form of host defense that is shared by almost all multicellular organisms (1, 2). However, it is not a redundant defense mechanism, and recent evidence has shown that innate immunity not only provides a first line of antimicrobial host defense, but also has a profound impact on the establishment of adaptive immune responses (1, 3). Upon infection, microorganisms ar...

متن کامل

Transcript analysis of some defense genes of tomato in response to host and non-host bacterial pathogens

The transcript levels of six defense genes including pathogenesis-related gene 1 (PR-1), pathogenesis-related gene 2 (PR-2), pathogenesis-related gene 5 (PR-5), lipoxygenase (LOX), phenylalanine ammonia-lyase (PAL) and catalase (CAT) were investigated in tomato plants inoculated with Xanthomonas axonopodis pv. phaseoli as a non-host pathogen and X. euvesicatoria as a host pathogen. Activation o...

متن کامل

DNase Sda1 Allows Invasive M1T1 Group A Streptococcus to Prevent TLR9-Dependent Recognition

Group A Streptococcus (GAS) has developed a broad arsenal of virulence factors that serve to circumvent host defense mechanisms. The virulence factor DNase Sda1 of the hyperinvasive M1T1 GAS clone degrades DNA-based neutrophil extracellular traps allowing GAS to escape extracellular killing. TLR9 is activated by unmethylated CpG-rich bacterial DNA and enhances innate immune resistance. We hypot...

متن کامل

A Group A Streptococcus ADP-Ribosyltransferase Toxin Stimulates a Protective Interleukin 1β-Dependent Macrophage Immune Response

UNLABELLED The M1T1 clone of group A Streptococcus (GAS) is associated with severe invasive infections, including necrotizing fasciitis and septicemia. During invasive M1T1 GAS disease, mutations in the covRS regulatory system led to upregulation of an ADP-ribosyltransferase, SpyA. Surprisingly, a GAS ΔspyA mutant was resistant to killing by macrophages and caused higher mortality with impaired...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 173 2  شماره 

صفحات  -

تاریخ انتشار 2004